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Earlier i t  has been shown that the properties of superfluid helium four have an intimate connection with a 
non-vanishing coherent pairing as well as  the generalized Bose Einstein condensation. Here, the nature of 
condensation for an interacting Bose system is re-examined. It  is shown that, under conditions of constant 
temperature and pressure. minimization of the Gibbs free energy leads to a generalized condensation of the 
type first proposcd by Girardeau. Extrapolation of these ideas to quasiparticle models of interacting Bose 
systems such as helium-11 leads to the conclusion that the condensation in momentum space should also be 
regarded iis generalized in the same sense. A bonus of this approach is the disappearance of macroscopic 
fluctuations in the density encountered in  the usual theory of the condensed ideal Bose system. 

K E Y  WORDS: Bose Condensation. Superfluid Helium four, density fluctuations. 

I INTRODUCTION 

Experimental and theoretical studies' of the last few years on superfluid helium four 
have stimulated substantial new interests in the structure and  properties of this 
quantum fluid. Liquid helium four undergoes a phase transition at  TL = 2.18 K 
accompanied by a characteristic change' in physical properties. In spite of a wealth2 
of experimental results a complete theory of superfluid Bose system is still missing. 
Indeed, little is known rigorously and approximations are introduced depending 
sometimes more on mathematical convenience rather than physical insight. For 
instance, theoretical and experimental estimates of the condensate fraction (the 
fraction of atoms condensed into the zero-momentum state) of liquid helium four 
depend strongly upon the methods used. The predictions3 range between fifty and 
zero percentage. Even the presently trusted theoretical4 results are in clear disagree- 
ment with experiments5. 

The purpose of this paper is to re-examine the nature of condensation in 
momentum space for interacting Bose systems and attention has been drawn to  an  
alternative kind of condensation of a type first thought of by Girardeau6 and which 
was termed by him a generalized condensation. 
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The paper proceeds as follows. In Section 11 below, the nature of the ideal 
Bose- Einstein condensation is considered and the density fluctuations due to the 
presence of the condensate contribution are shown to be large. Section 111 deals with 
the generalized Bose-Einstein condensation applied to the interacting Bose system 
and i t  is shown that within the model the density fluctuations are vanishingly small. 
Section IV is concerned with the generalized condensation in the context of the pair 
theory of Bose superfluids, where it was found that the excitation energy becomes 
manifestly gapless and initially linear in k. Finally Section V concluded with a 
summary and brief discussion. 

I 1  THE IDEAL BOSE-EINSTEIN CONDENSATION (BEC) 

The pioneering work on the microscopic nature of particle statistics of Bose' and its 
extension by Einstein8 revealed that a non-interacting Bose system undergoes a phase 
transition at a low enough temperature in which a single particle zero momentum 
state (k  = 0) will be macroscopically occupied. This phenomenon is called the simple 
Bose-Einstein condensation (BEC). Subsequently, London' pointed out that there 
are similarities between the condensation in momentum space which occurs in the 
ideal boson gas and the i.-transition in liquid helium four. Although the belief seems 
rather widespread that the appearance of a simple BEC is of crucial physical 
significance in superfluid phase, this belief is by no means universal. Little is known 
experimentally about the connection between Bose-Einstein condensation and super- 
fluidity. Landau" and Feynman" never invoked the concept of the BEC and the 
striking success of the BCS12 model to describe the superconducting phase of charged 
fermions encouraged othersI3 to propose an analogous model for Bose systems. 

Hohenberg and P l a t ~ m a n ' ~  have suggested that the inelastic scattering of neutrons 
at large momentum transfer can be used to measure directly the momentum 
distribution of individual atoms, i.e. 

(where u l ( u k )  is the creation (destruction) operator and the bracket denotes the 
thermal average of operators in the grand canonical ensemble of statistical mechanics) 
as a function of k in superfluid helium four and thereby observe directly the simple 
BEC which could appear as a sharp peak at the maximum of the line shape for the van 
Hove'' dynamic liquid structure fxtor ,  S(q, w), at large momentum value. Based on 
this assumption, later on, experiments5 were performed to observe directly if a 
condensate fraction n , / N  exists in superfluid helium four. Unfortunately, because of 
the experimental complications one cannot measure S(q, w )  for sufficiently large q 
(momentum transfer) so as to expect the condensate peak not be broadened by final 
state effects. In  spite of the instrumental broadening and other effects, the experimen- 
tal data predicteds a few percentage of the simple BEC. The experimental data have 
been re-analyzed and some4 argued in detail that the numerical inaccuracies exist in 
data and results are consistent with the complete absence of any simple BEC but 
others" concluded that simple condensate most probably exists in helium-I1 in spite 
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CONDENSATION IN A BOSE LIQUID 75 

of errors in data. There has been a continuing effort’ both experimentally and 
theoretically to extract the value of condensate fraction in superfluid helium-I1 but a 
direct demonstration is yet to be seen. In this respect further experimental work on 
S(q, (0) for high q values seems highly desirable. 

In the usual theory of the ideal Bose gas one argues’ that below a certain 
temperature, 71, defined by 

27rh ’ 
mk,  

7; = ~ ( ~ / < ( 3 / 2 ) ) ~ ’ ~  

(here 11 = N / V  is the number density, while ((x) is the Riemann zeta function), one 
needs to look at the k = 0 term carefully so as to realize the proper condensate 
contribution, i.e. there will exist a macroscopic occupation of the k = 0 level and one 
needs to isolate i t  carefully. 

The number expectation value is given by 

N = nk = 1 I/[exp(/k,) - I ] ,  
L k 

(2.3) 

where ck = (h2k2/2m - p). 

Since the Bose gas is spatially isotropic, one may replace (the factor depending 
upon vector) in the summation over k in Eq.(2.3) by its angular average over all 
orientations of k. Since all factors in the summands depend on Ikl only. 

If i l k  is to be a continuous function of k and the summation may be converted to an 
integration, i.e. 

(2.4) 

For the ideal Bose gas because of the simple BEC, one cannot use Eq. (2.4) as it will 
miss out the / k l  = 0 contribution. However, one treats the Bose system properly, if 
one writes 

N = c’ l/[exp(/kL) - I ]  (2.5) 

and the prime on the above summation signifies the exclusion of the k = 0 summand 
from the sum, i.e. one adds the condensate contribution as 

and then uses Eq. (2.4). 

temperature dependence of the c o n d e n ~ a t e ~ ~ ~  is given by 
If  no is the average number of atoms in the ground state than for T I  T,, the 

(2.7) no = N[I - (T/r)3’2], 

i.e. no is of order N whereas for T > Tc, n o  is only of O( I ) .  Thus from Eq.(2.7) one finds 
that the ideal Bose system undergoes 100% condensation at the absolute zero 
temperature. Many properties including the one just mentioned for ideal Bose gases 
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76 R.  I .  M. A. RASHID 

are not seen in superfluid helium four. For TI T,, the chemical potential, p, is fixed 
for the boson case in such a way that e0 - O(N-”2) becomes macroscopically small”. 
For this to be so one requires that the chemical potential to be of order N - ’ ,  i.e. 

(2.8) 

p = -1/pno. (2.9) 

no = VCexp(-Pp) - 11 25 l/PpL, 

i.e. 

The number no is then obtained by subtracting the total number of bosons in levels 
k > 0 from the total number, N ,  of bosons present. 

If this is the type of condensation that could exist in an ideal Bose system then it is 
trivial to show that the fluctuation in the density 

(2.10) 

will be of O( 1). This is a consequence of the condensate contribution to ( ( N  - ( N ) ) ’ ) ,  
i.e. 

( ( P  - (P>Y> - - ( ( N  - ( N > ) 2 >  
(P)’ ( W 2  

((no - ( n o > ) 2 >  = (4) - ( n o ) 2  = (no)2 + (no). (2.1 1) 

Since the application of the elevated temperature form of Wick’s theorem shows that 

(uo+aoao+uo) = 2(~o+a , )~  + (u,+ao) 

for an ideal Bose system. 

(2.12) 

111 THE GENERALIZED CONDENSATION 

In earlier work’8, the “super” properties of helium-I1 have been connected with the 
Hartree-Fock-Gor’kov phaseI3 in addition to the possibility of self-consistent 
existence of generalized condensate contribution. If one takes the condensate contri- 
bution properly into account, it can easily be shown that both the coherence pairing 
and the generalized Bose-Einstein condensation will vanish at the same critical 
temperature, Ti (for details see Ref. 18). 

Frequently, in models of interacting Bose systems one works with Landau’s 
quasiparticle approximation 19, thus ending up with boson quasiparticles of well- 
defined energies (but of course, a novel dispersion spectrum2’). Such models often 
display a simple BEC which come about in a precisely analogous fashion2 to the case 
of the ideal gas. But these models used an improper treatment to replace the real 
potential by a repulsive interaction and reproduced either Bogoliubov’s spectrum” 
or a gap in the energy spectrum which has proved to be unphysical’3. 

It  has long been known22 that the scattering length of the helium four interparticle 
potential is negative. Girardeau6 has shown that for such a situation the lowest energy 
state is not the one in which the zero-momentum state contains a macroscopic 
occupation of particles, i.e. the simple BEC is not possible. He argues that when the 
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CONDENSATION IN A BOSE LIQUID 77 

interparticle interactions are included properly a small volume of momentum space 
(which may contain a few states near the ground state, i.e. k I k, rather than a single 
momentum state k = 0) is occupied predominantly. The workz3 of Sawada and 
Vasudevan and others support the above idea of generalized or smeared condensa- 
tion. 

Here the argument pertains to  systems at constant temperature and pressure (and 
particle number) as these are the conditions most commonly met within the 
laboratory. General and well-known thermodynamic arguments dictate that the 
Gibbs free energy 

G =  E -  T S + p V  (3.1) 

will be a minimum for the equilibrium system. Assuming the system scales in the 
normal way, one deduces that 

G = / I N  (3.2) 

so that the equilibrium condition of minimum G can be thought of as minimizing the 
chemical potential, p (subject of course to  constant temperature, pressure and particle 
number ). 

Returning to  the case of generalized condensation, one now postulates6 that 
because of the interaction in the condensed phase, the chemical potential is of order 
N - "  where 0 < IX I 5. Hence the states up to k, (see Ref. 18) will have a population of 
order NZ only, which is large yet amounts to only an  infinitesimal fraction of N .  As 
in the case of the ideal BEC the contributions of the higher states decrease 
monotonically with increasing values of k. Thus 

/ L  = - ?IN" (3.3) 
where 7 is a constant. Then we have (cf. (2.9)) 

(3.4) 

i.e. the k = 0 level does not contain a macroscopic number of particles as in the simple 
condensation. Levels adjacent t o  the k = 0 state will have E ~ < ~ ,  - N - 2 ' 3 ,  so that for 
these levels 

1 nk = N o  z 1 / [ / I ( N - 2 ' 3  + ' / N - ' ) ]  
k < k ,  

(3 .5 )  

which will be of the same order of magnitude as no as long as 0 < (r 5 5. Thus one has 
now conceived of a possibility of accommodating the same number of particles as  in 
the normal treatment of the simple BEC, but the chemical potential will now be much 
lower than for simple condensation (i.e. y N - "  < O ( N -  ')). Consequently, one can 
conclude that the generalized BEC is favoured as  opposed to simple condensation in 
the interacting Bose system from free energy considerations. Furthermore, it is trivial 
to show, by simple application of Wick's theorem, that the density fluctuations in this 
model of the condensed phase of an interacting Bose system will be O ( N " - ' ) ,  i.e. 
vanishingly small for large systems. 
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78 R.  I .  M. A. RASHID 

IV GENERALIZED CONDENSATION AND THE PAIR MODEL OF BOSE 
SUPERFLUIDS 

The pair theory of the Bose superfluid as detailed in Ref. 13 is a generalization of the 
usual Hartree-Fock description of the normal phase to include in addition the 
possibility of the self-consistent existence of a coherence pairing. 

The integral equations for Bose pair theory were developed in Ref. 13 and from the 
work of the author", one realizes that such models display a generalized BEC as this 
minimises the Gibbs free energy. (For a fuller discussion, the reader is referred to 
Rashid I 8.) 

Isolating the contribution from the smeared condensate (states k < k,) using the 
relationship 

The total number of particles, N, self-consistent self-energy, rk ,  coherence energy, Ak,  
are obtained (for details see Ref. 13) from the solutions of coupled non-linear integral 
equations, viz. 

k '  

A,, = - VkN, sign(Ao) - c' Vk-,,.  
k '  

where 

and the excitation energy 

(4.3) 

(4.4) 

(4.5) 

The prime on the summation symbols denote the exclusion of the k up to k, vectors 
summand from the sum. The terms No, to, cO ( =  N V O  + to - p = + lAOl) are due to 
any condensate contribution within the region k < k,. From Eq. (4.6) one can see that 
the excitation spectrum is manifestly gapless and initially linear in k since one can 
see13 <,, and Ak are even functions of k. Also V, in the above is to be understood as 
a pseudopotential and not as the bare potential. 

I t  has been dem~ns t r a t ed l~  earlier that a system interacting via a repulsive 
potential has no coherence and as such will not be superfluid in pair model. On the 
other hand, if  the free energy is minimized by having a non-vanishing pair coherence 
Ak, then Eq. (4.4) will have a non-trivial solution. 
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CONDENSATION IN A BOSE LIQUID 79 

I f  now a solution to equations of the model is considered with all A, = 0 then 

E ,  = Zk (4.7) 

(4.8) 

and 

nk = I/[exp(PZ,) - I ]  

This is the Bose analogue of a Hartree-Fock (Fermi) gas. At a certain critical 
temperature, T, (see Eq. ( 2 . 2 ) )  the BEC (simple or generalized depends upon the form 
of the interaction) will start in the system and one has the following possibilities: 

( i )  The system lacks the necessary properties to afford a non-vanishing solution to 
Eq. (4.4) even at T =  0 K .  The system will not be superfluid in the present model even 
though i t  contains the simple or generalized BEC. 

( i i )  The system has realistic potential, i.e. has repulsive as well as a sufficiently 
attractive interaction for a non-trivial solution to Eq. (4.4) to exist at  low enough 
temperatures. I t  is also conceivable that the pair interactions could be such that the 
system will allow a non-trivial solution to Eq. (4.4) but that all the particles will be 
depleted from the k = 0 or  k < k , .  This system will still be superfluid in the pair model 
even though the momentum condensation is absent. 

However, in the present model, one is concerned with the case when both the 
coherence and the generalized condensation simultaneously occur. Moreover, it has 
been s h ~ w n ' ~ . l *  that as long as the pair coherence is present in the system, the 
experimental trends are reproduced by the present theory. 

V S U M M A R Y  A N D  CONCLUSIONS 

Here we have mainly discussed the problem of the Bose-Einstein condensation in 
interacting Bose systems. For this purpose Girardeau's ansatz' has been used and as a 
result we gain some insights into the nature of momentum condensation in superfluid 
helium four. 

For an  interacting Bose system, the lifetime effect of quasiparticles is important and 
clearly, therefore, the condensation in these models can also be thought of as being 
generalized in the sense of Girardeau as this minimizes the Gibbs free energy. This 
means that the particles with lowest energy are smeared into a small volume in 
momentum space around k = 0. The fluctuations in such models also becomes 
macroscopically small thus removing a major point of criticism of such models. 
Finally, one should emphasize that this is independent of the nature of the interaction 
assumed in the quasiparticle model. 

The problem of what actually happens in a strongly interacting Bose system is, of 
course, much more complicated. Going beyond the quasiparticle approximations, one 
expects that the spectral functions of the single particle propagators be broadened to a 
width which depends on the interaction strength. Then i t  is clear that n o  single k -  
vector can be preferred energy-wise over the neighbours as the single particle energies 
are not well defined. The condensation peak (thought of as a plot of n, against k )  
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80 R. 1. M. A. RASHID 

would be still further broadened by the scattering mechanisms until its width is of 
order of the interaction strength, i.e. O( 1). In this case, of course, the fluctuations may 
be expected to be O(N- '). The present calculations and  experimental data ' ,  however, 
indicate that the problem of momentum condensation in superfluid helium four at 
least merits further investigation. 

A C k  t l ~ J \ V / ~ ~ d g ~ ! 7 l < f l f  .S 
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